От умной одежды до зелёной энергетики: как использование графена изменит нашу жизнь

От умной одежды до зелёной энергетики: как использование графена изменит нашу жизнь
От умной одежды до зелёной энергетики: как использование графена изменит нашу жизнь

  • © pixabay.com

Невидимый и прочный

Графен состоит из плотно соединённых атомов углерода, выстроенных в решётку наподобие пчелиных сот толщиной всего в один атом. Это делает его самым тонким материалом в мире, невидимым невооружённым глазом, но при этом очень прочным и эластичным. Впервые графен выделили в 2004 году российские учёные Андрей Гейм и Константин Новосёлов, которые работали тогда в Манчестерском университете. Шесть лет спустя опыты физиков были удостоены Нобелевской премии.

С тех пор исследователи со всех уголков планеты пытались найти всё новые способы применения и, что интересно, получения графена. Ведь одним из главных факторов, мешающих наладить масштабное производство этого чудо-материала, была дороговизна «оригинального» варианта получения графена с помощью сложного процесса разложения графита. Очень быстро графен научились добывать при помощи лазера, используя в качестве сырья обычную древесину, и даже путём взрыва углеродсодержащего материала.

Пока одни учёные соревнуются, чей метод получения графена проще и дешевле, другие находят ему самое необычное применение.

Красота не требует жертв

Специалисты Северо-Западного университета (США) превратили чёрный «от природы» графен в суперстойкую краску для волос.

В ходе эксперимента американские учёные покрыли образцы человеческого волоса раствором из листов графена. Так, физикам удалось превратить светлые, платиновые волосы в угольно-чёрные. Новый цвет оставался стойким на протяжении 30 смывов.

Краска на основе графена обладает дополнительными преимуществами, утверждают американские исследователи. Каждый покрытый ею волос подобен маленькому проводу, способному проводить тепло и электричество. Это означает, что волосы, окрашенные графеновой краской, легко рассеивают статическое электричество и решают проблему электризующихся волос.

  • globallookpress.com
  • © Mari Barlow/moodboard

Американские учёные также полагают, что их краска абсолютно безвредна.

«Наружный слой ваших волос, или кутикула, выполняет защитную функцию и состоит из тонких клеток наподобие рыбных чешуек. Чтобы приподнять эти чешуйки и позволить молекулам краски быстро проникнуть в волосы, используются аммиак, перекись водорода или органические амины», — сообщил автор исследования Цзясин Хуан.

Из-за подобных манипуляций волосы постепенно истончаются. Проблему позволяет решить краска, которая покрывает волосы, но не проникает в их структуру. Однако такая краска очень быстро смывается. Как утверждают специалисты Северо-Западного университета, их изобретение позволяет справиться с обеими проблемами.

В индустрию моды и красоты графен начал проникать ещё в 2017 году, когда британская компания CuteCircuit представила платье с элементами из этого чудо-материала. Платье Graphene Dress со встроенными светодиодами благодаря графену меняет цвет «в такт» дыханию его обладательницы.

  • Платье на основе графена, Манчестер, 2017 год
  • Reuters

«Материал будущего» выполняет в платье одновременно две задачи: он является датчиком, улавливающим частоту дыхания, а также питает светодиоды, которые и меняют цвет платья. Разработчики умной одежды считают, что графен можно использовать для получения тканей, которые будут радикально менять свой цвет. Презентация Graphene Dress состоялась на родине этого материала — в Манчестере.

Тихая графеновая революция

«У графена очень много интересных физических свойств и явлений, например электронные свойства, которые позволяют использовать графен для конструирования сложных электронных наноустройств. Есть работы, в которых его используют для защиты наночастиц от окисления», — рассказал в беседе с RT старший научный сотрудник кафедры химической кинетики химического факультета МГУ им. М.В. Ломоносова Владимир Боченков.

Кроме того, графен поможет решить одну из главных задач современности — получить недорогие, надёжные и экологически безопасные источники энергии. Так, графеновые композиты позволяют создать более эффективные солнечные панели. Учёные из Массачусетского технологического института доказали, что при помощи графена можно сделать эластичные, дешёвые и прозрачные солнечные элементы, превращающие практически любую поверхность в источник электроэнергии. Солнечные батареи из графена, по словам учёных, могут производить энергию даже в дождь.

«В графене можно делать определённые отверстия, выбивая некоторые атомы углерода, и получать регулируемые поры, которые можно использовать в качестве мембраны в батареях и топливных ячейках. Также мембраны на основе графена могут удешевить производство тяжёлой воды. Она необходима в атомной промышленности для получения относительно экологически чистой энергии. Здесь опять же уникальные свойства графена позволяют быстрее разделять субатомные частицы, делая весь процесс очень экономичным. В результате мы получаем более зелёную и дешёвую атомную энергию», — отметил Боченков.

Крупнейшие технологические компании уже приступили к созданию литийионных аккумуляторов для смартфонов с использованием графена. Инновационная технология позволяет заряжать батарею быстрее и хранить заряд дольше.

  • AFP

Графен можно использовать в качестве мембраны для фильтрации атомов водорода в воздухе и получить биологически чистое топливо. К такому выводу пришли первооткрыватели графена. Андрей Гейм и Константин Новосёлов выяснили, что при высоких температурах и присутствии платины в качестве ускорителя реакции графен пропускает положительно заряженные ионы водорода (протоны) и задерживает практически всё остальное. Такая технология поможет совершить прорыв в развитии зелёной энергетики.

Взяли на вооружение графен и производители военной продукции. Выяснилось, что материал обладает пуленепробиваемыми свойствами. Учёные из Нью-Йоркского университета получили очень прочные и почти невесомые бронежилеты. В ходе эксперимента физики запустили стеклянную микропулю в листы графена толщиной от десяти до 100 слоёв. Графен рассеял энергию пули, летящей на скорости 3000 м/с. Однако в точке удара материал вытянулся в форме конуса, а затем треснул. Появление трещин не позволяет пока поставить графеновые бронежилеты на службу полицейским. По оценкам специалистов, чтобы защитить своих обладателей, такие бронежилеты должны состоять из миллионов слоёв графена. А для этого требуется наладить его производство в промышленных масштабах.

Проник графен и в биологию. В 2016 году китайские учёные накормили шелкопрядов тутовыми листьями, которые были сбрызнуты препаратами, содержащими графен. В итоге экспериментаторы получили прочную и хорошо проводящую электричество графеновую шёлковую нить.

«Экспериментов с графеном проводится масса. Потенциал этого материала невероятно широк. Думаю, через несколько лет графен будет использоваться в создании и различных детекторов света, и контактных линз, и вообще чего угодно. Практическое применение этого материала может ограничиваться лишь фантазией учёных», — заключил Боченков.

Графен, его производство, свойства и применение

Графен, его производство, свойства и применение в электронике и др.

Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.

Описание графена. Открытие графена:

Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp 2 -связями. Графен в буквальном смысле представляет собой материю, ткань .

Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит , известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены и углеродные нанотрубки . Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.

На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).

Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах. Предполагается, что графен может стать отличной заменой кремнию, особенно в полупроводниковой промышленности, и другим химическим элементам.

Графен был получен двумя британскими учеными российского происхождения Константином Новоселовым и Андреем Геймом, работающими в Университете Манчестера. За «передовые опыты с двумерным материалом – графеном» Константин Новоселов и Андрей Гейм в 2010 г. были удостоены Нобелевской премии. Для получения графена ученые использовали подручные материалы – кусок графита и обычный скотч. Ученые нанесли на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали ленту, каждый раз разделяя (отшелушивая) вещество пополам. Эти действия ученые проводили до тех пор, пока от образца графита не остался один, последний – прозрачный слой – графен, который перенесли на подложку. Данный способ получения графена именуется методом “отшелушивания”.

Свойства и преимущества графена:

– графен является самым прочным материалом на Земле. В 300 раз прочнее стали . Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,

благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,

– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,

графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния . Так, подвижность зарядов графена составляет более 1 000 000 см 2 /В∙с. Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с,

– обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы ,

обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди. Его теплопроводность составляет около 5000 Вт/м∙К,

– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света и оптически прозрачен в широком диапазоне от UV до far-IR,

графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,

– самый легкий материал. В 6 раз легче пера,

инертность к окружающей среде,

– впитывает радиоактивные отходы,

благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,

– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур,

– при протекании соленой воды по листу графена последний способен генерировать электрическую энергию за счет преобразования кинетической энергии движения потока соленой воды в электрическую (т.н. электрокинетический эффект),

– графен является гидрофобным и абсолютно непроницаем (за исключением воды) материалом для жидкостей и газов, в том числе агрессивных соединений,

– химически нейтрален, стабилен и экологичен.

Графеновая гонка. Как графен может изменить нашу жизнь?

Графеновая гонка. Как графен может изменить нашу жизнь?

2021 год был объявлен в России Годом науки и технологий, а месяц июнь, согласно календарному плану Года, посвящен новым производственным технологиям и материалам. Сегодня мы поговорим об одном из таких новых перспективных материалов — графене.

Графен — самый тонкий материал из когда-либо обнаруженных. Впервые он был выделен в начале нулевых, а в 2010 году выпускникам МФТИ, сотрудникам Манчестерского университета Андрею Гейму и Константину Новоселову за это открытие присудили Нобелевскую премию по физике. Есть много идей, как можно применить этот тонкий и чрезвычайно прочный материал, о котором так много говорят в последние годы.

Слой углерода толщиной в один атом

Толщина графена составляет всего один атом — это самый тонкий материал в мире, его можно назвать двумерным объектом. Представьте обычный грифель карандаша, которым вы пишете — он состоит из нескольких миллионов слоев графена, и, по сути, графит в карандаше — это уложенные друг на друга слои графена. Поэтому каждый из нас хотя бы раз в жизни держал графен в руках. Материал был обнаружен Геймом и Новоселовым, когда они изучали проводимость графита. Приклеив скотч к куску графита, ученым удалось получить один слой графена.

Идея отделить слой графена от графита с помощью скотча пришла к ученым спонтанно. Скотч, с помощью которого образцы графита готовят для работы на сканирующем туннельном микроскопе, после процедуры обычно отправляется в мусорное ведро. Однако Новоселов и Гейм решили найти куску скотча с остатками тонкого слоя материала другое применение — за это впоследствии их в шутку окрестили garbage scientists (мусорные ученые).

Вы читаете статью на сайте о путешествиях braindepot.ru — если вам понравилась статья, пожалуйста, поделитесь ею в социальных сетях, пусть ваши подписчики и друзья, которые не меньше нашего любят путешествовать оценят эту заметку!

Фото: https://donschool86.ru

В возможность отделить один слой никто не верил. Семьдесят лет назад Лев Ландау и Рудольф Пайерлс доказали, что таких материалов существовать не может: силы взаимодействия между атомами должны смять их в гармошку или свернуть в трубочку, пишет Forbes. Однако графен оказался исключением из этого правила.

От умной одежды до зелёной энергетики, как использование графена изменит нашу жизнь

Практическое применение

Графену приписывают множество самых разнообразных практических применений. Его возможно использовать для создания имплантов для мозга, он может применяться в системе охлаждения для спутников, графен можно превратить в сверхпроводник; полезен он и в быту: например, в качестве краски для волос. Уже сегодня графен применяется в электронике, медицине: работы по нейродевайсам и биосенсорам ведутся с 2008 года — но когда графеновую биоэлектронику начнут массово применять на практике, пока трудно сказать.

Этот материал особо ценится за его прочность и упругость. А еще графен очень прозрачный: его прозрачность составляет 97%.

«Сейчас есть много идей о том, как можно применять графен. Были идеи, что получится его использовать в качестве транзистора, как замена элементной базы современной электроники. Но это, насколько я знаю, не пошло, и теперь пытаются использовать его упругие свойства. Если сравнить атомарный слой углерода (чем по своей сути графен и является) и атомарный слой, скажем, алюминия, то мы увидим, что жесткость графена будет как минимум в десять раз выше. Так как графен одноатомный, то он спокойно пропускает свет, то есть вы видите через него всё. С другой стороны, он достаточно прочный, чтобы обеспечить необходимую защиту от каких-то механических воздействий. Поэтому графен можно применять как прозрачный, но прочный экран для предохранения жидкокристаллических дисплеев, например. Его прочность может быть полезной для создания гибких небьющихся экранов, городских строений и др., возможно, он станет будущим строительным материалом для космических кораблей, общественного транспорта и т.д.», — рассказывал в интервью «Научной России» заместитель директора Института теоретической физики им. Л.Д. Ландау РАН Игорь БУРМИСТРОВ.

Нобелевские лауреаты К. Новоселов (слева) и А. Гейм. Источник фото: https://panorama.pub/

Нобелевские лауреаты К. Новоселов (слева) и А. Гейм. Источник фото: https://panorama.pub/

Некоторые эксперты считают, что графен даже может спровоцировать новый скачок в развитии человеческой цивилизации. Кремниевая эра скоро закончится, говорят ученые, ведь кремневая элементная база, на которой создается современная техника, уже подходит к своему технологическому и физическому пределу, и в этом смысле графен может стать отличной альтернативой. Использование графена в электронике поможет создать более мощные компьютеры и системы. В мире его уже используют для создания гибких мобильных телефонов.

В свое время освоение металлов кардинально изменило жизнь людей — ту же судьбу пророчат графену, называя его самым загадочным и многообещающим новым материалом будущего, который способен произвести революцию в энергетике. Графен дает возможность получать энергию совершенно новым способом. Этот материал обладает возможностью пропускать позитивно заряженные атомы водорода, при том, что он непроницаем для других газов, в том числе и для самого водорода. Это открывает перед учеными невероятные перспективы по созданию топливных элементов на основе водорода. Так, например, можно будет собирать в таких элементах водород из воздуха, а затем получать с помощью графена электричество и воду, практически не порождая никаких отходов.

Куртка из графена. Фото: https://fainaidea.com/

В прошлом году физики из США показали, что графен можно использовать для сбора энергии: он способен вырабатывать энергию с помощью окружающей среды. Учеными из Университета Арканзаса была разработана схема, способная улавливать тепловое движение графена и преобразовывать его в электрический ток.

«Энергосберегающая схема, основанная на графене, может быть встроена в чип для обеспечения чистой, безграничной, низковольтной энергии для небольших устройств или датчиков», — отметил Пол Тибадо, профессор физики, участвовавший в эксперименте.

Графен может быть использован для создания квантовых компьютеров, благодаря этому материалу такие компьютеры могут стать компактнее. У графена могут быть и более общедоступные применения, например в дизайне одежды. Вещи из графена, легкие и плотные, уже сегодня можно найти на мировых рынках.

Графеновое будущее

Разработки на основе графена уже близки к массовому внедрению в экономику, считает член-корреспондент РАН, научный руководитель Корпоративного энергетического университета Евгений Аметистов. При этом в графеновой гонке Россия отнюдь не лидирует, и наши технологии далеки от совершенства.

В рамках программы финансирования науки (2014-2020 гг.) Евросоюз выделил один миллиард евро на запуск производства графена в промышленных масштабах. Проект объединяет 23 страны и 142 научно-исследовательских коллективов и промышленных партнёров. Не так давно, в 2015 году, в Манчестере открылся Национальный графеновый институт, строительство которого финансировали Европейский фонд регионального развития и правительство Великобритании. Однако более половины мировых публикаций и заявок на патенты в области графена сегодня принадлежит Китаю, где действует так называемый Инновационный альянс графеновой промышленности.

А как обстоят дела в России? По числу исследований графена Россия сегодня находится на 14-м месте в мире, пишет российский деловой еженедельник «Эксперт». Причем процент российских научных публикаций по теме графена падает, отмечает издание: в 2000-е годы он составлял 5,6%, а в 2021 — только 2,3%.

Исследованиями графена в России занимаются свыше 30 организаций, среди них различные институты Российской академии наук, МГУ им. М.В. Ломоносова, предприятия ГК «Роскомос», частные фирмы. В нашей стране есть свой Институт графена, на базе которого впервые в России была создана установка полупромышленного типа для производства чистого (почти 100%) графена.

Графеновый чип. Фото: http://www.inmesolgenerator.ru

«Сейчас идет своеобразная графеновая гонка. Наши позиции изначально были очень хорошими, поскольку традиционно Россия сильна в плане фундаментальной физики. Конечно, мы немного упустили тот момент, когда мир рванул вперед», — рассказывал директор центра фотоники и двумерных материалов МФТИ Валентин Волков на Международной конференции по двумерным материалам в г. Сочи.

Уже сегодня в России графеновые и графеноподобные материалы применяют для повышения ударной прочности экспериментальных образцов карбидокремниевой брони для ударных вертолетов и военных шлемов, при производстве солнечных панелей, используют в составе литий-ионных аккумуляторов и т.д. Однако массовое применение графена — вопрос будущего.

Графен: вещество, которое изменит наш мир

Графеновый чип.

Научное сообщество и промышленность всего мира восхищаются новым веществом, которое благодаря своим удивительным свойствам и многочисленным возможностям практического применения, вне всякого сомнения, изменит многочисленные аспекты нашей жизни; имя этому веществу — графен.

В чем же необычность графена?

Речь идет о прозрачном, очень тонком (максимально тонком), очень легком (0,77 мг / кв. м), водонепроницаемом, эластичном, гибком и одновременно удивительно прочном веществе. Графен является лучшим проводником электричества из когда-либо известных и, к тому же, в изобилии находится в природе, что делает его весьма экономичным.

Кроме того, недавние исследования Манчестерского университета подтвердили его способность «самовосстанавливаться». При повреждении кристаллической решетки графеновой пленки атомы графена притягивают к себе свободные атомы углерода, заполняя по мере необходимости образовавшиеся «дыры».

Химическая структура

Графен представляет собой углеродную пленку толщиной в один атом, кристаллическая решетка которой имеет форму сетки из шестиугольников. Получают графен из природного графита, который добывается в угольных шахтах и из которого делают, например, простые карандаши или тормоза автомобиля; хотя возможно также синтезирование этого вещества.

С точки зрения химической структуры, графен является аллотропной модификацией углерода, имеющей плоскую кристаллическую решетку, образованную шестигранниками (как пчелиные соты) из атомов углерода, соединенных посредством ковалентных связей путем наложения гибридов sp(2) связанных углеродов.

Графен был открыт в 2004 году британскими учеными российского происхождения Андреем Геймом и Константином Новоселовым, однако лишь в 2010 году, когда авторы открытия получили Нобелевскую премию по физике, началась «графеновая лихорадка».

Применение

Поразительное разнообразие свойств графена обеспечивает многочисленные возможности промышленного использования. На самом деле, возможности практически безграничны. Их список постоянно расширяется. Вот лишь некоторые примеры:

Транзистор, основанный на вертикальной графеновой гетероструктуре (Манчестерский университет).

Транзистор, основанный на вертикальной графеновой гетероструктуре (Манчестерский университет).

  • Жесткие диски, имеющие возможность хранения данных в 1000 раз большего объема, чем современные устройства.
  • Полупроводники, используемые в производстве сверхбыстрых компьютеров будущего (взамен кремниевым).
  • Гибкие (которые можно свернуть и сложить и которые лягут в основу самых разных устройств) и сверхтонкие экраны, которые позволят интегрировать бесконтактные системы оплаты.
  • Видеокамеры ночного видения, чтобы осуществлять фото— и видеосъемку без источников света.
  • Аккумуляторные батареи более длительного срока действия для мобильных телефонов, компьютеров и электромобилей (графеновые электроды позволяют в 10 раз увеличить срок действия батареи, используемой для зарядки наших мобильных телефонов).
  • Новые сверхбыстрые телекоммуникационные сети.

applications-of-graphene

  • Ультраконденсаторы (для автомобилей и электропоездов, а также для повышения кпд линий электропередачи).
  • Применение в аэронавтике: более быстрые самолеты, выбрасывающие в атмосферу меньше вредоносных выхлопов.
  • Мощные солнечные установки с эффективностью 42 % (в настоящее время лишь 16 % улавливаемой энергии солнца преобразуется в электричество).
  • Телевизоры с органическими светодиодами (OLED), при производстве которых используются органические материалы, не приносящие вред окружающей среде.
  • Мембраны, позволяющие экономить энергию при переработке природного газа и одновременно сократить выбросы углекислого газа тепловых электростанций и выхлопных труб автомобилей.
  • Снижение себестоимости разделения газа в производстве пластмасс и горючего.
  • Применение в медицине, в частности при разработке новой вакцины против рака и производстве сенсоров, наносимых на зубы для обнаружения патологий.

Более того, графен представляет собой идеальную основу для создания новых материалов «под заказ» в зависимости от конкретных нужд. Эльза Прада, научный сотрудник Мадридского института материаловедения Высшего совета по научным исследованиям Испании CSIC, работавшая вместе с Новоселовым, указала, в частности, на флюорографен (двумерный аналог тефлона, имеющий исключительные смазывающие и изолирующие свойства), гексагональный нитрит бора (прозрачный кристаллический изоляционный материал, обладает высокой твердостью, в комбинации с графеном улучшает электромеханические свойства), дисульфид молибдена (еще один двумерный кристалл, обладающий многообещающими свойствами и возможностью применения в производстве транзисторов нового поколения) и силицен (соединение кремния, подобное графену; имеет некоторые подобные графену свойства, может быть легко использован в современной электронике, основанной на кремнии).

Графен в Испании и проект Евросоюза Graphene Flagship

Испанские передовые ученые занимаются исследованиями в области изучения графена. На сегодняшний день самым активным проектом в Испании является проект Европейского Союза Graphene Flagship. Компания из Сан-Себастьяна Graphenea, крупнейший производитель графена в ЕС, является одним из партнеров этого проекта вместе с такими компаниями, как Philips, Varta, Nokia, ST Microelectronics, Repsol, Alcatel-Lucent и Airbus. Наряду с этим в ближайшем будущем планируется начать строительство одной из крупнейших в мире графеновых фабрик в городе Йекла (Мурсия, Испания).

Трудности, которые предстоит преодолеть

На сегодняшний день производство графена из графита, а также получение материала заданной чистоты в зависимости от дальнейшего применения представляют собой весьма сложный процесс. Несмотря на это, решение этих трудностей — лишь вопрос времени: такие издания, как Science и Nature регулярно отзываются на сообщения о новейших технологических разработках.

Графеновая гонка. Как графен может изменить нашу жизнь?

Графеновая гонка. Как графен может изменить нашу жизнь?

2021 год был объявлен в России Годом науки и технологий, а месяц июнь, согласно календарному плану Года, посвящен новым производственным технологиям и материалам. Сегодня мы поговорим об одном из таких новых перспективных материалов — графене.

Графен — самый тонкий материал из когда-либо обнаруженных. Впервые он был выделен в начале нулевых, а в 2010 году выпускникам МФТИ, сотрудникам Манчестерского университета Андрею Гейму и Константину Новоселову за это открытие присудили Нобелевскую премию по физике. Есть много идей, как можно применить этот тонкий и чрезвычайно прочный материал, о котором так много говорят в последние годы.

Слой углерода толщиной в один атом

Толщина графена составляет всего один атом — это самый тонкий материал в мире, его можно назвать двумерным объектом. Представьте обычный грифель карандаша, которым вы пишете — он состоит из нескольких миллионов слоев графена, и, по сути, графит в карандаше — это уложенные друг на друга слои графена. Поэтому каждый из нас хотя бы раз в жизни держал графен в руках. Материал был обнаружен Геймом и Новоселовым, когда они изучали проводимость графита. Приклеив скотч к куску графита, ученым удалось получить один слой графена.

Идея отделить слой графена от графита с помощью скотча пришла к ученым спонтанно. Скотч, с помощью которого образцы графита готовят для работы на сканирующем туннельном микроскопе, после процедуры обычно отправляется в мусорное ведро. Однако Новоселов и Гейм решили найти куску скотча с остатками тонкого слоя материала другое применение — за это впоследствии их в шутку окрестили garbage scientists (мусорные ученые).

Фото: https://donschool86.ru

В возможность отделить один слой никто не верил. Семьдесят лет назад Лев Ландау и Рудольф Пайерлс доказали, что таких материалов существовать не может: силы взаимодействия между атомами должны смять их в гармошку или свернуть в трубочку, пишет Forbes. Однако графен оказался исключением из этого правила.

Практическое применение

Графену приписывают множество самых разнообразных практических применений. Его возможно использовать для создания имплантов для мозга, он может применяться в системе охлаждения для спутников, графен можно превратить в сверхпроводник; полезен он и в быту: например, в качестве краски для волос. Уже сегодня графен применяется в электронике, медицине: работы по нейродевайсам и биосенсорам ведутся с 2008 года — но когда графеновую биоэлектронику начнут массово применять на практике, пока трудно сказать.

Этот материал особо ценится за его прочность и упругость. А еще графен очень прозрачный: его прозрачность составляет 97%.

«Сейчас есть много идей о том, как можно применять графен. Были идеи, что получится его использовать в качестве транзистора, как замена элементной базы современной электроники. Но это, насколько я знаю, не пошло, и теперь пытаются использовать его упругие свойства. Если сравнить атомарный слой углерода (чем по своей сути графен и является) и атомарный слой, скажем, алюминия, то мы увидим, что жесткость графена будет как минимум в десять раз выше. Так как графен одноатомный, то он спокойно пропускает свет, то есть вы видите через него всё. С другой стороны, он достаточно прочный, чтобы обеспечить необходимую защиту от каких-то механических воздействий. Поэтому графен можно применять как прозрачный, но прочный экран для предохранения жидкокристаллических дисплеев, например. Его прочность может быть полезной для создания гибких небьющихся экранов, городских строений и др., возможно, он станет будущим строительным материалом для космических кораблей, общественного транспорта и т.д.», — рассказывал в интервью «Научной России» заместитель директора Института теоретической физики им. Л.Д. Ландау РАН Игорь БУРМИСТРОВ.

Нобелевские лауреаты К. Новоселов (слева) и А. Гейм. Источник фото: https://panorama.pub/

Нобелевские лауреаты К. Новоселов (слева) и А. Гейм. Источник фото: https://panorama.pub/

Некоторые эксперты считают, что графен даже может спровоцировать новый скачок в развитии человеческой цивилизации. Кремниевая эра скоро закончится, говорят ученые, ведь кремневая элементная база, на которой создается современная техника, уже подходит к своему технологическому и физическому пределу, и в этом смысле графен может стать отличной альтернативой. Использование графена в электронике поможет создать более мощные компьютеры и системы. В мире его уже используют для создания гибких мобильных телефонов.

В свое время освоение металлов кардинально изменило жизнь людей — ту же судьбу пророчат графену, называя его самым загадочным и многообещающим новым материалом будущего, который способен произвести революцию в энергетике. Графен дает возможность получать энергию совершенно новым способом. Этот материал обладает возможностью пропускать позитивно заряженные атомы водорода, при том, что он непроницаем для других газов, в том числе и для самого водорода. Это открывает перед учеными невероятные перспективы по созданию топливных элементов на основе водорода. Так, например, можно будет собирать в таких элементах водород из воздуха, а затем получать с помощью графена электричество и воду, практически не порождая никаких отходов.

Куртка из графена. Фото: https://fainaidea.com/

В прошлом году физики из США показали, что графен можно использовать для сбора энергии: он способен вырабатывать энергию с помощью окружающей среды. Учеными из Университета Арканзаса была разработана схема, способная улавливать тепловое движение графена и преобразовывать его в электрический ток.

«Энергосберегающая схема, основанная на графене, может быть встроена в чип для обеспечения чистой, безграничной, низковольтной энергии для небольших устройств или датчиков», — отметил Пол Тибадо, профессор физики, участвовавший в эксперименте.

Графен может быть использован для создания квантовых компьютеров, благодаря этому материалу такие компьютеры могут стать компактнее. У графена могут быть и более общедоступные применения, например в дизайне одежды. Вещи из графена, легкие и плотные, уже сегодня можно найти на мировых рынках.

Графеновое будущее

Разработки на основе графена уже близки к массовому внедрению в экономику, считает член-корреспондент РАН, научный руководитель Корпоративного энергетического университета Евгений Аметистов. При этом в графеновой гонке Россия отнюдь не лидирует, и наши технологии далеки от совершенства.

В рамках программы финансирования науки (2014-2020 гг.) Евросоюз выделил один миллиард евро на запуск производства графена в промышленных масштабах. Проект объединяет 23 страны и 142 научно-исследовательских коллективов и промышленных партнёров. Не так давно, в 2015 году, в Манчестере открылся Национальный графеновый институт, строительство которого финансировали Европейский фонд регионального развития и правительство Великобритании. Однако более половины мировых публикаций и заявок на патенты в области графена сегодня принадлежит Китаю, где действует так называемый Инновационный альянс графеновой промышленности.

А как обстоят дела в России? По числу исследований графена Россия сегодня находится на 14-м месте в мире, пишет российский деловой еженедельник «Эксперт». Причем процент российских научных публикаций по теме графена падает, отмечает издание: в 2000-е годы он составлял 5,6%, а в 2021 — только 2,3%.

Исследованиями графена в России занимаются свыше 30 организаций, среди них различные институты Российской академии наук, МГУ им. М.В. Ломоносова, предприятия ГК «Роскомос», частные фирмы. В нашей стране есть свой Институт графена, на базе которого впервые в России была создана установка полупромышленного типа для производства чистого (почти 100%) графена.

Графеновый чип. Фото: http://www.inmesolgenerator.ru

«Сейчас идет своеобразная графеновая гонка. Наши позиции изначально были очень хорошими, поскольку традиционно Россия сильна в плане фундаментальной физики. Конечно, мы немного упустили тот момент, когда мир рванул вперед», — рассказывал директор центра фотоники и двумерных материалов МФТИ Валентин Волков на Международной конференции по двумерным материалам в г. Сочи.

Уже сегодня в России графеновые и графеноподобные материалы применяют для повышения ударной прочности экспериментальных образцов карбидокремниевой брони для ударных вертолетов и военных шлемов, при производстве солнечных панелей, используют в составе литий-ионных аккумуляторов и т.д. Однако массовое применение графена — вопрос будущего.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Путешествуем по всему миру